If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+4=55
We move all terms to the left:
m^2+4-(55)=0
We add all the numbers together, and all the variables
m^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| -3b+9=18 | | 8+2(4w-5)-3w=-10 | | 5x-3=6+1x | | O.5x+2=12 | | 35+n=67 | | -11+m/2=-14 | | 33=10(7-5x) | | 3f+1f+1f=12.50 | | 15r-45=3(2r-3) | | 14/17t=42 | | 3y+5=5y–1 | | 45+10=5x(+) | | X+2x+2x-11=29 | | m2+4=55 | | 31.48+1.8x=44 | | 3/4n+36=12 | | 2(4z−1)=3(z+2)2(4z−1)=3(z+2)2(4z−1)=3(z+2)2(4z−1)=3(z+2)2(4z−1)=3(z+2)2(4z−1)=3(z+2) | | -4=3x=20 | | -1−x=-8 | | 2(2x-3)=3(-x+5) | | 8=3c+12-c+44 | | –7=(0.5m+3) | | 2(4v-4)+8v=83 | | 72=2/3k | | Y=-1.5r+3 | | z/7+9=-30 | | 72=2.3k | | x−10=-1 | | 8={1/4}(5x-8) | | -2y+3=5y-4 | | 10x–8x=28 | | 3(m+12)+7=58 |